Top 58 Articles About Immunomodulatory Effects

Fungal mediated innate immune memory, what have we learned?
This review aims at presenting the newly described aspect of memory in innate immunity with an emphasis on the historically fungal mediated one, covering the known molecular mechanisms associated with training. In addition, the review uncovers the numerous non-specific effect that β-glucans trigger in the context of infectious diseases and septicaemia, inflammatory diseases and cancer.
Effects of orally administered yeast-derived beta-glucans: a review.
In human trials, orally administered Y-BG significantly reduced the incidence of upper respiratory tract infections in individuals susceptible to upper respiratory tract infections, whereas significant differences were not seen in healthy individuals. Increased salivary IgA in healthy individuals, increased IL-10 levels in obese subjects, beneficial changes in immunological parameters in allergic patients, and activated monocytes in cancer patients have been reported following Y-BG intake. The studies were conducted with different doses (7.5-1500 mg/day), using different preparations that vary in their primary structure, molecular weight, and solubility. In animal models, oral Y-BG have reduced the incidence of bacterial infections and levels of stress-induced cytokines and enhanced antineoplastic effects of cytotoxic agents. Protective effects toward drug intoxication and ischemia/reperfusion injury have also been reported. In conclusion, additional studies following good clinical practice principles are needed in which well-defined Y-BG preparations are used and immune markers and disease endpoints are assessed. Since optimal dosing may depend on preparation characteristics, dose-response curves might be assessed to find the optimal dose for a specific preparation.
Beta-glucans in higher fungi and their health effects.
Together with chitin, the beta-glucans are components of mycetes' cell walls. A high level of biological efficiency has been found in beta-glucans, especially beta-1,3-D-glucans and beta-1,6-D-glucans isolated from some basidiomycetes. (Biological efficiency refers to the relative ability of beta-glucans to promote a desired response, for example to induce leukocyte activation and to produce inflammatory mediators.) These polysaccharides increase the number of Th1 lymphocytes, which help protect organisms against allergic reactions. A number of beta-glucans, for example pleuran from Oyster (Pleurotus spp.) mushrooms or lentinan from Shiitake (Lentinus edodes) mushrooms, have shown marked anticarcinogenic activity. In addition to having an immunity-stimulating effect, beta-glucans may participate in physiological processes related to the metabolism of fats in the human body. Their application results in a decrease in the total cholesterol content in blood and may also contribute to reductions in body weight.
Non-Starch Polysaccharides in Durum Wheat: A Review.
The characterisation of specific plant materials and the release of the durum wheat genome sequences, together with the development of more accurate classes of DNA-based markers and consensus maps, have allowed the identification of important genes involved in the control of (1,3;1,4)-β-glucan and arabinoxylan biosynthesis. Many QTL region have been described to be involved in the control of (1,3;1,4)-β-glucan and arabinoxylan but none of them were associated to one of the cellulose synthase (CslF, CslH and CslJ) and glycosyl transferase genes (GT43, GT47 and GT61), which have been designated as responsible for the regulation and accumulation of (1,3;1,4)-β-glucan and arabinoxylan, respectively, in different tissues types. Nevertheless, the isolation and characterisation of the CslF6 and CslH durum gene sequences have been reported together with the expression pattern in durum endosperm at different developmental stages, increasing the speed of the genetic gains. The control of these traits by several genes makes it interesting to incorporate beneficial alleles, which can contribute to the rise in non-starch polysaccharides content in durum kernels, into introgressed lines to obtain new durum genotypes with higher (1,3;1,4)-β-glucan and arabinoxylan. The additive effects of some designated genes in the QTL regions reported could be used to generate breeding plants though the marker assisted selection (MAS) approach.
Beta-glucans and cancer: The influence of inflammation and gut peptide.
This article reviews the effects of different enriched β-glucan food consumption on immune responses, inflammation, gut hormone and cancer. Gut hormones are influenced by enriched β-glucan food consumption and levels of such peptide as YY, ghrelin, glucagon-like peptide 1 and 2 in humans influence serum glucose concentration as well as innate and adaptive immunity. Cancer cell development is also regulated by obesity and glucose dishomeostasy that are influenced by β-glucan food consumption that in turn regulated gut hormones.
A critical review on the impacts of β-glucans on gut microbiota and human health.
The review was aimed to accumulate the evidence on types of β-glucans, their functional properties and the mechanism by how the β-glucans regulate the gut microbiota and human health. The various in vitro, in vivo and clinical studies, have been summarized, in particular, the changes happening upon the β-glucans supplementation on the gut microbiota. Overall, this review updates the recent studies on β-glucans and gut microbiota and also inputs the demanding questions to be addressed in β-glucans-microbiota research in the future.
The Complexity of Fungal β-Glucan in Health and Disease: Effects on the Mononuclear Phagocyte System.
Several experimental evidences have demonstrated a crucial role for β-glucan in the host–pathogen interaction during infections. Moreover, considerable efforts have been made to understand the cellular and molecular mechanisms of action of β-glucan in fungal pathogenesis as well as how it promotes a phagocytic-mediated immune response. Similarly, administration of fungal β-glucan is well known to stimulate the immune system and boost resistance to various infectious diseases and cancers, highlighting the multifaceted role of this molecule (Figure ​(Figure1).1). However, although many in vivo studies have shown a beneficial effect of the β-glucans isolated from different sources, a comprehensive investigation of the mechanism of action is still lacking. In addition, the absence of detailed methodology on experimentation, β-glucan molecules source and purity reached render interpretation of the various results very complex. As such, discrepancies observed in the different studies are mainly related to the choice of purified components being used. In addition, unfortunately only few human studies are available and most of them have not been followed up with success. Hence, the possibility for clinical application of β-glucan should be considered with caution and will require further investigation. Future studies need to deeply characterize how β-glucans with different structure and molecular weight interact with each receptor and which specific signaling pathways are triggered. Moreover, providing details on the procedure and composition of the carbohydrate molecule under investigation remains crucial. An understanding should be made in the near future to use a common standardized β-glucan molecule with described biochemical properties. With such a common control, we might endeavor a rational use of this promising molecule in the future as an adjuvant or therapeutic agent.
Dietary roles of non-starch polysaccharides in human nutrition: a review.
The remarkable properties of dietary NSPs are water dispersibility, viscosity effect, bulk, and fermentibility into short chain fatty acids (SCFAs). These features may lead to diminished risk of serious diet related diseases which are major problems in Western countries and are emerging in developing countries with greater affluence. These conditions include coronary heart disease, colo-rectal cancer, inflammatory bowel disease, breast cancer, tumor formation, mineral related abnormalities, and disordered laxation. Insoluble NSPs (cellulose and hemicellulose) are effective laxatives whereas soluble NSPs (especially mixed-link β-glucans) lower plasma cholesterol levels and help to normalize blood glucose and insulin levels, making these kinds of polysaccharides a part of dietary plans to treat cardiovascular diseases and Type 2 diabetes. Moreover, a major proportion of dietary NSPs escapes the small intestine nearly intact, and is fermented into SCFAs by commensal microflora present in the colon and cecum and promotes normal laxation. Short chain fatty acids have a number of health promoting effects and are particularly effective in promoting large bowel function. Certain NSPs through their fermented products may promote the growth of specific beneficial colonic bacteria which offer a prebiotic effect. Various modes of action of NSPs as therapeutic agent have been proposed in the present review. In addition, NSPs based films and coatings for packaging and wrapping are of commercial interest because they are compatible with several types of food products. However, much of the physiological and nutritional impact of NSPs and the mechanism involved is not fully understood and even the recommendation on the dose of different dietary NSPs intake among different age groups needs to be studied.
Cathepsin D--many functions of one aspartic protease.
For years, it has been held that cathepsin D (CD) is involved in rather non-specific protein degradation in a strongly acidic milieu of lysosomes. Studies with CD knock-out mice revealed that CD is not necessary for embryonal development, but it is indispensable for postnatal tissue homeostasis
Multiphoton fluorescence lifetime imaging microscopy (FLIM) and super-resolution fluorescence imaging with a supramolecular biopolymer for the controlled tagging of polysaccharides.
A new supramolecular polysaccharide complex, comprising a functionalised coumarin tag featuring a boronic acid and β-d-glucan (a natural product extract from barley, Hordeum Vulgare) was assembled based on the ability of the boronate motif to specifically recognise and bind to 1,2- or 1,3-diols in water.
Transcription factor c-Maf is a checkpoint that programs macrophages in lung cancer.
Macrophages have been linked to tumor initiation, progression, metastasis, and treatment resistance. However, the transcriptional regulation of macrophages driving the protumor function remains elusive. Here, we demonstrate that the transcription factor c-Maf is a critical controller for immunosuppressive macrophage polarization and function in cancer. c-Maf controls many M2-related genes and has direct binding sites within a conserved noncoding sequence of the Csf-1r gene and promotes M2-like macrophage–mediated T cell suppression and tumor progression. c-Maf also serves as a metabolic checkpoint regulating the TCA cycle and UDP-GlcNAc biosynthesis, thus promoting M2-like macrophage polarization and activation. Additionally, c-Maf is highly expressed in tumor-associated macrophages (TAMs) and regulates TAM immunosuppressive function. Deletion of c-Maf specifically in myeloid cells results in reduced tumor burden with enhanced antitumor T cell immunity. Inhibition of c-Maf partly overcomes resistance to anti–PD-1 therapy in a subcutaneous LLC tumor model. Similarly, c-Maf is expressed in human M2 and tumor-infiltrating macrophages/monocytes as well as circulating monocytes of human non–small cell lung carcinoma (NSCLC) patients and critically regulates their immunosuppressive activity. The natural compound β-glucan downregulates c-Maf expression on macrophages, leading to enhanced antitumor immunity in mice. These findings establish a paradigm for immunosuppressive macrophage polarization and transcriptional regulation by c-Maf and suggest that c-Maf is a potential target for effective tumor immunotherapy.
Vitamin D: modulator of the immune system.
This review will discuss the complex immune-regulatory effects of 1,25(OH)(2)D(3) on immune cells as well as its role in infectious and autoimmune diseases, more in particular in tuberculosis and type 1 diabetes (T1D).
Direct enhancement of the phagocytic and bactericidalcapability of abdominal macrophage of chicks by β-1,3-1,6-glucan.
Salmonella enterica serovar Enteritidis is the major zoonotic and intracellular pathogen. Different strategies have been developed to prevent the S. Enteritidis infection. The beta-1,3-1,6-glucan of Schizophyllum commune was used as an immunological booster to determine the minimal dietary level of beta-glucan that would restrict S. Enteritidis infection through the effects of beta-glucan on the activity of macrophages and direct physical protection of the intestine.
Supplemental vitamin C and yeast cell wall β-glucan as growthenhancers in newborn pigs and as immunomodulators after anendotoxin challenge after weaning.
To test possible dietary immune modulators, 32 crossbred male pigs were given 1 of 4 dietary treatments (8 pigs/treatment): control, Saccharomyces cerevisiae with beta-glucan (Energy Plus, Natural Chem Industries LTD, Houston, TX; 0.312 g/kg of BW, 2.5% of diet), vitamin C (Stay C 35, DSM Nutritional Products Inc., Prisippany, NJ; 75 ppm), or beta-glucan plus vitamin C together (combination; 0.312 g/kg of BW and 75 ppm, respectively).
Modulation of intestinal inflammation by yeasts and cell wall extracts: strain dependence and unexpected antiinflammatoryrole of glucan fractions.
Yeasts and their glycan components can have a beneficial or adverse effect on intestinal inflammation. Previous research has shown that the presence of Saccharomyces cerevisiae var. boulardii (Sb) reduces intestinal inflammation and colonization by Candida albicans. The aim of this study was to identify dietary yeasts, which have comparable effects to the anti-C. albicans and anti-inflammatory properties of Sb and to assess the capabilities of yeast cell wall components to modulate intestinal inflammation.
Normal human fibroblasts express pattern recognition receptors for fungal (1-3)-β-D-glucans.
Fungal cell wall glucans nonspecifically stimulate various aspects of innate immunity. Glucans are thought to mediate their effects via interaction with membrane receptors on macrophages, neutrophils, and NK cells. There have been no reports of glucan receptors on nonimmune cells. We investigated the binding of a water-soluble glucan in primary cultures of normal human dermal fibroblasts (NHDF).
Mushrooms, tumors, and immunity
In this paper, we review existing data on the mechanism of whole mushrooms and isolated mushroom compounds, in particular (1-->3)-beta-D-glucans, and the means by which they modulate the immune system and potentially exert tumor-inhibitory effects.