Top 6 Articles About arthritis

Phytochemicals inhibit the immunosuppressive functions of myeloid-derived suppressor cells (MDSC): Impact on cancer and age-related chronic inflammatory disorders.
Traditional herbal medicine has provided natural remedies against cancers and many age-related inflammatory diseases for thousands of years. Modern drug discovery techniques have revealed several active ingredients and their medicinal targets have been characterized. Concurrently, there has been great progress in understanding the pathological mechanisms underpinning cancers and inflammatory diseases. These studies have demonstrated that immature myeloid-derived suppressor cells (MDSCs) have a crucial role in the immune escape of cancer cells thus promoting tumor growth. Inflammatory factors stimulate the recruitment, expansion, and activation of MDSCs in tumors and inflamed tissues. The immunosuppression generated by MDSCs has an important role in the resolution of acute inflammation but in chronic inflammatory disorders, the activation of MDSCs suppresses the innate and adaptive immune responses thus aggravating the disease processes in association with tumors, chronic infections, and many degenerative diseases. Currently, MDSCs are important drug discovery targets in cancers and chronic inflammatory diseases. Interestingly, there are promising reports that certain phytochemicals can function as potent inhibitors of the immunosuppressive MDSCs that could partially explain the therapeutic benefits of herbal medicine. We will briefly describe the immune suppressive functions of MDSCs in cancers and age-related inflammatory diseases and then review in detail the chemically characterized phytochemicals of different herbal categories, e.g. flavonoids, terpenoids, retinoids, curcumins, and β-glucans, which possess the MDSC-dependent antitumor and anti-inflammatory properties.
Vitamin D: modulator of the immune system.
This review will discuss the complex immune-regulatory effects of 1,25(OH)(2)D(3) on immune cells as well as its role in infectious and autoimmune diseases, more in particular in tuberculosis and type 1 diabetes (T1D).